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Methods presented in [l] are used to investigate the radiation and diffraction of elastic waves by a 

periodic row of circular apertures in an orthotropic plane. 

A RANGE of similar two-dimensional problems for an isotropic medium has been considered 
previously [2-4]. A similar problem has been studied for the anisotropic case, apparently only 
for pure-shear M-waves in a layer [S]. 

1. Consider a homogeneous orthotropic elastic medium and let the n,, x,, x, axes be 
perpendicular to the planes of elastic symmetry, i.e. the principal axes. We shall investigate the 
case of plane deformation in the x,, n, plane. 

The equations of the dynamic theory of elasticity can be written as 

azuk 
P=$-=c’ 

a2um 
bh axiax, U-1) 

Here u, is the displacement of points in the direction of the x, axes, p is the density, and c~,,,, 
are the components of the elasticity tensor [6]. In (1.1) and below summation is assumed over 
repeated indices taking the values 1 and 2. 

Putting u, = ui exp(-iot) and omitting the time factor, we can write (1.1) in the form 

azu 
‘9 axjax, -++w2u=o (1.2) 

Here II is a two-dimensional vector with components U: (k = 1, 2), and Cj, is the matrix with 
elements cMk (k, ~lt = 1, 2). 

Green’s matrix G(o, x1, x2) of the orthotropic plane is the solution of the equation 

LG(o,x* 9x2 1 = 6(x* )6(x2)1, 
a2 

L = c, aax + pd1 
xk j 

(l-3) 

@(xi) is the delta function and I is the two-dimensional identity matrix). 
After performing a double Fourier transformation with respect to x, and x, in (1.3) we have 

(1.4) 
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Here tj (j= 1, 2) are the transformation parameters and G(o. &, 
transform of Green’s matrix G(o, x,, x2). Below we shall denote 

&) is the double Fourier 
functions and their trans- 

forms by the same letter, distinguishing them by their arguments. 
From (1.4) we obtain G(o, {r, 6,) = &I(@, &, Q”. After s~l~cation, this equality can be 

reduced to the form 

G(o,t&&)= 
A(o 

(1.5) 

where I$ is the matrix adjoint to Cy and F& = detC, +CG. 
Performing an inverse Fourier tra~Eormation with respect to E& in (l.S), we have 

exPWS2~2)&2 q, = ?,!I&. 
_m A(o,5,,52) ’ ’ ax: 

(j=U) 

It can be shown that the equation 

can be represented in the form 

a& f al@& >r;; + aL@&,) = 0 U.8) 

aud in the case of an o~ho~~i~ plane 

a0 =c22c&jr a&&5r)= tI,,s: -al24 

az(w.S1)=u2,5f-~9:w:,+od, 0; = pw* 

=I, =CI$~&_ -2C&6, ffi2=Caf%jr %=c11c66 

a22 =q, +c&$, $1 =ci;iir c,, =%2zr Cl2 = Ct122t %6 = Cl212 

For orthotropic materials, whose elastic constants were given in f6, 71, the bilinear form 
takes positive values. Then the roots ezj (j = 1,2,3,4) of Eq. (1.8) lie on the real and imaginary 
axes, sy~e~~~y with respect to those axes (Fig. 1). 

To evaluate integral (1.7) we use Jordan’s lemma and the residue theorem. The contour of 
integration for the case when x, > 0 is shown in Fig. 1. We obtain 
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In accordance with the radiation ~nditi~ns in the second ~~rrnula of (1.9) we take the 
branch of the radical for which yi = da for a 30 and rj =-iJ-a for oc 0. (Here the square 
roots are positive.) 

Performing an inverse Fourier transformation with respect to 5, in (1.6), we obtain Green’s 
matrix for an orthotropic plane in the form 

(1.10) 

2. The stress component parallel to the Xi axis acting across an area element with normal A is 
given by the formula pi =u,n, (where the a, are the ~~onen~ of the stress tensor and it, is 
the projection of II onto the x, axis). 

Using Hooke’s law 

1 
=ik 

au, au 
=.-.qunr m-t--= 

2 ( 1 kl an, 

we find after a series of transformations that 

Note that relation (2.1) can be written as 

a 
p’=T”u, T” =Ti- 

hrn’ 
‘I’: = Ifi”, I&, 

Acting with the operator I” on Green’s matrix (1.10) we find that 

G:(w,x,,~,)=T~G(o,x,,*,)=~_ TGp(W,41.x2)exP(-iT;lXi)641 
I, 

The matrix G;(o, x,, xz) will be called Green’s stress matrix. 
From (2.2) and (1.10) we obtain 

m=O 

u, (o,t, I= it,, (5:‘&“F,, - w2T 1 

U, to& ) = 5:‘J’;F,, - t:T,RF,, f PO’T,” 

U2@.51)= 4, fT;F,, + T#d 

U&JL~,) = T;Fzz 

(2.1) 

(2.2) 

(2.3) 

When deriving (2.4) it was assumed that when m= 2 the factor in front of s(n,) vanishes 
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when x, = 0 and hence the corres~n~ng term can be omitted. 
It can be shown that 

From this it follows that 

Using (ZS), we find that G;(o, &, xz) -G:(O, &, xz) as 15, I-+ 00. 
After tr~for~ng (2.3) we obtain 

G?@&,,x,) = ’ i (-l)j-‘[isign(5,)djNi”, - 
2CZo (di - d; ) j=l 

-sign(x2)N~21exp(-~j151x21) 

NY1 = ri;2T”F,1 + T;F,* - T,“F,, , NY1 = T;Ft2 - T,“F,, + $Tz”Fzz 

It can be shown that 

~Gl”(o,~l,~2~-G;(O.~~,~~~~=~2~~~~~Q(~~,~-’)+~~~,~-2~J 

Substituting (2.6) into (2.3) and integrating, we have 

G;(0,x,,x2) = 
1 

_ d: ) ,$:-l)j-‘d, 
2a*n(d~ - 

NT, d?x2+ x2 - N’ x2 
12 1 

J2 CljZx; +x: 

We will represent the matrix G;(o, x,, XJ in the form 

(2.5) 

(2.6) 

(2.7) 

cw 

It follows from estimate (2.7) that the matrix R”‘(a), xl, x2) is continuous over the combined 
variables %, x,. Thus the singularities of the fictions G;(Q), x;, xJ when w +O and G;(O, 
n,, xz) coincide. It follows from (2.8) that G;(O, x1, x,) has a unique singularity at x = 0. 

We will now construct Green’s matrix I(o, x~, x2) for the quasi-periodic problem, i.e. we 
determine the components of the displacement amplitudes at the point x=(x,, x2) from the 
action of the system of lumped forces e, exp(-iwt) applied at points with coordinates n, = ml 
(rn=O, fl, 22, . * .), x, = 0 (I being the length of some line segment), satisfying the equalities 
eim =ejexp(-ima) (ej being the unit vector along the xi axis, j= 1, 2), and from these 
components we then form the jth column of the matrix I’( o, x1, n,). Here a is the parameter 
of the quasi~pe~~ic problem, I a 1% R. 

Green’s stress matrix of the quasi-periodic problem is determined similarly, its columns 
being components of the stresses over the area element with normal n. It is denoted by q(o, 
-5 xz)* 

Representations of dynamic Green’s matrices for anisotropic planes have been obtained in a 
series of papers (see, for example, [8,9]). However, these representations cannot be used to 
construct Green’s matrix efficiently for a quasi-peptic problem. 

We replace .x1 by x1 -d in (2.9), multiply it by exp(-ima) and sum over m from -00 to 00. 



We obtain 

(the prime on the su~ation sign denotes the absence of the na = 0 term), 
Thus we have 

Using the formula 

we obtain from (2.11) that 

It fohows from (2.12) that for values of o which make rilt vanish (Le. rr when & = &,J, 
%O% 51,il xz) and co~equentIy also ~(cu, q,, x2) take infinitely large values. We say that 
these frequencies are resonant, and denote them by ojk. 

Equatiug (2.11) to zero, we obtain 

(2.14) 

Note that at uun-reson~t vafues of w, c(o, x,, x2) has the same siuguIari~es as C:(O, x,, 
xa) because Q”(w, x1, x2) and S’(x,, x2) are continuous. 

3. Consider an orthotropic homogeneous elastic plane with a periodic row of circtuar 
apertures of radius R whose centres he along the x1 axis separated from one another by 
distances I, We will solve the stationary quasi-periodic problem in which the load on the 
apertures is transformed by an irreducible representation of the translation group with 
parameter a (I a Is 7c) 
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Here k is the number of the aperture (k = 0, &l, +2 , . . .) and 0 is the angular coordinate of a 
point of the contour. 

We will look for a solution of the problem in the form of a simple layer potential 

utx)=Ir(~,x-YY)q(Y)ds~ 
n 

(3.1) 

(q(y) is a two-dimensional vector and IT is the contour of the fundamental aperture whose 
centre lies at the origin of coordinates). 

We will act on (3.1) with the operator T’ 

T%O = j r: (0, x - y)q( y lb, (3.2) 
l-l 

Passing to the fit as x -+ x, E II, we obtain 

lint Iqvw+Yh(Y)q =po(xo) 
x-)x0 n (3.3) 

Here n is the normal to the circle II at the point x, and p&) is the specified load at the 
contour. 

The limit of the integral in (3.3) is not equal to the integral along the circle at x = x,, because 
of the singularity of the kernel v(w, x) at x = 0. As has already been noted, this singularity is 
the same as for G;(O, x), hence we obtain the additional term in the limit of the integral over II 
from the kernel G;(O, x). 

We introduce the complex variables zj = x+id,x,, zj = yl +id,y,. 
Then 

x’i-n dj2tx2 -yz) +(x, -n) 2 =i(&+&.) (3.4) 

Let 8 be the angle giving the position of the point y on the circle II. Then y1 = Rcose, 
y, = RsinO, zj = R(cosQ+ tij sine). 

From this we have 

btj = Z> (0)s = (-b + idjyl)& (3.5) 

Because d,ry = Rd3, using (3.5) we obtain 

ds, = r(Tj)dCj* t(rj)=Rl(Y2+idjYl) 

It can be shown that 

(3.6) 

where q(rj) =Q(cLi) = q(y) and IIj is the ellipse that is the image of the circle II under the 
~~sfor~tion zj = zj(z), z = yx +iy2 E II. 

Similarly, iTj is the image of II under the mapping l.+ =Tj(z), with the integration around r?, 
being taken in the clockwise direction. 

Assuming that the function q =q(y) satisfies the Lipschitz-Holder condition, from the 
Sokhotskii-Pleme~ formulae we find that 
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,im I 9(zjMTj)drj = j q(zj)r(z') 

z+zOj rri 
Zj-Zj 

’ dzj +7tjq(ZOj)r(zOj) 
“i Zoj ‘fj (3.7) 

(+ E lIi_, zj + qj from outside the edge II,). 
In a smnlar manner one can obtain an expression for the limit of the second integral on the 

right-hand side of (3.6). 
Using representations (2.10) and (2.11), and also the expression for the limits in formula 

(3.7), we have from (3.3) that 

A”(x)q(x)+jr~(o,x-yfqty)~~=po(x). xEn 
n 

A”(X) = dOti ~(-l)‘-‘[N;ldj.r, -Nj”Lxz /di3/(Xz +f!TXf) 
j=l 

d0 = r_2a&Tf; - &)I-’ 

(3.8) 

This is the integral equation of the probtem. 
Below, if the vector II is directed along the normal to the edge II, the superscript II will be 

omitted. 

4. Replacing x by x-y in (2.8) and substituting y, =Rcos& yz = Rsine, X, = Rcose,, 
n, = &sine,, we have after some reduction 

(4.1) 

From (2.10), (2.11) and (4.11) it follows that Eq. (3.8) is singular. We shalt seek its solution in 
the form 

0) = x qm exp(ime) 
In 

W2) 

Henceforth the 
point y. Similarly 
e,, e), etc. . 

limit of q(y) as y + II is denoted by q(e) where 8 is the polar angle of the 
pa(x) = po(Bo) (0, being the polar angle of the point x), I’,@, x-y) = r,(o, 

Substituting (4.2) into (3.9), we obtain a modified equation; multiplying both sides of it by 
(27~)’ exp(~eo) and integrating over 8, from -rc to II: we arrive at an infinite system of linear 
algebraic equations with respect to a, 

Here 

I!Ybmqnl = Pn 
m (4.3) 

48 =~_iA(eo)exp(-ineo)do, pa =Il;;ipo~eo~e~p~-i~eo)~o 
x It 

BI, = 7 jrgeo ,e) exp(im0 - he0 )dedeo 
--L --1E 

(4.4) 
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Without dwelling on their derivation we give formulae for computing the coefficients of the 
linear algebraic system 

Here I$,,, (j, k, ~=l, 2) are two-dirne~s~o~a~ matrices which are coefficients of the 
followiflg represent&an of the matrix NTk 
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were used in deriving (4.5) and (4.6). 
Similar reiations also hold for A, 

5. We will show that for non-resonant values of o the system reduces to a q~si-regear one. 
From (4.4) and (4.5) we have 

it can be shown that for 1 n la 2 

From this 

We ~~~u~ the notation D, = A, +RB@ sag/ and make the substitution a, = Dze in 
system (43). As a result we obtain the system 

We note that 

xB&,q,D =pnr Bft, =B,D;;f 
n 

~b~~~~y, for In lb 2 the main diagonal of the matrix Bf,,,, consists of ones. 
We estimate the sum 
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(where the Bi’f, m. k.l are elements of the matrix B&J. 
From (5.1) it follows that 

(5.4) 

Here the prime on the summation sign denotes the absence of the m = n term, and EiM are 
elements of the matrices EL = E,D:. 

The convergence of the series in (5.4) follows from the asymptotic estimates (4.7). 
The condition Bti < 1 together with the condition for Dz to exist are restrictions imposed on 

the elastic constants of the material. For orthotropic materials whose properties were given in 
[6,7] these conditions are, however, satisfied. 

It follows from (4.7) that the coefficients Bin,,, have no effect on the quasi-regularity of 
system (5.3). 

One can show that the function Q(o, Cl,, 9) is continuous on the square I$ I, 10 Is rc, where 
it has partial derivatives satisfying a Lipschitz condition of some order l.t (0 < J.I < 1). Integrating 
by parts over 0 in (4.4) and noting that the non-integral terms vanish, we obtain 

B 3,n.m + B4,n,m = ~_~_~~[Q(~,6,,e)-Q(0,0,.0)]e~edee-i.BOde0 (5.3 

Because &&l[Q(o, t3,,, t3)-Q(0, Cl,, Cl)] satisfies the Lipschitz condition, the inner integral 
tends to zero like Im P as I m I+ 00. The inner integral is, moreover, a continuous function of 
$. Hence the right-hand side of (5.5) also tends to zero as In I+ 00. It then follows from (5.5) 
that 

exists and S$ + 0 as I n I+ 00. 
Summarizing all the above concerning the coefficients of system (5.3), we arrive at the 

conclusion that this system is quasi-regular, which means that both it and system (4.3) can be 
solved by reduction. 

6. We will investigate the behaviour of the solution of (3.9) in the neighbourhood of the 
resonant frequency (2.14). As an example we will assume that o+o,,~ (where k is fixed). 
Then yisr + 0, while the term in G;(o, &k, XJ tends to infinity. It can be shown that this term 
has the form given below and the following asymptotic behaviour 
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Then Green’s stress tensor for the quasi-periodic problem can be written as follows: 

r;(w,x,,x,)=G~(o,~,.~*)+uo(w,,k*~,,k) 
exp(-&,kx, 1 -1 

2a0G.k 
yl,k + H;(w,J,) (6.1) 

where H;(w, x1, xz) is a matrix that is continuous as a function of x1 and x, and remains 
bounded as w + w~,~. 

With the help of (6.1) the integral equation (3.9) can be written as 

(E-WI + V,)q = v (6.2) 

E = Y~,~, V,q = (2x)-’ jexp[-it,,,R(cos&, -cosfl)]q(t3)& 
-II 

(6.3) 

Note that VI is a finite-dimensional operator transferring the space gQ(-rc, IC) into the two- 
dimensional subspace spanned by the vectors e, exp(-i&,Rcos8,) (j = 1, 2). Z$)(-lc, rc) is the 
Hilbert space of square-integrable two-dimensional vectors with scalar product 

The operator V, depends continuously on e, hence for small e we put V,(E) = V,(O). From 
(6.2) we obtain 

(V, + &v,)q = EV (6.4) 

We note that J!&~(-rc, rc) can be represented in the form of an orthogonal sum of subspaces 

$‘(-x, K) = R + N (6.5) 

Here R is the domain of values of the self-conjugate operator VI, while N is its null-space. It 
follows from (6.5) that one can construct an orthonormal basis in I$a(-x, x) as follows: 

goj E R, g,,,j(m f 0) E N (i = 42) 

For example, one can put g, = e,exp(-i&$cos&imO). 
We will seek a solution of Eq. (6.4) in the form of a series 

(6.6) 

Substituting (6.6) into (6.4) and scalar-multiplying by g,,,@,), we obtain 

por+e~j~,p~(V2~~.g0,)=e(v.g0~) V=U) 

@1Pi(V2&&) = (vtg,,) (n + 0. I= 192) 

(6.7) 

We eliminate p,,, (l= 1, 2) from (6.7) and arrive at the following system of linear equations 
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for pW (j = 1, 2; ~tl= fl, +2, . . .) 

I: ~"~j~Pl.i = U,I (n =+1,+2,...;r = 1.2) 
m*O j=l 

Here 

-(v2gol&2NV2l3o2~gor )I, U,f = (v&f) + e hg,p)Kp~ 
P'l 

It follows from (6.3) that system (6.6) becomes quasi-regular for sufficiently small E 
(including E = 0). The proof is performed as for (4.4). Thus the behaviour of the solution in the 
nei~bo~ho~ of a resonant point is in principle no different from its behaviour at other 
frequencies. 

Exumple. A periodic problem (a = 0). Suppose that the same normal load p( w, t) = exp(-iat) acts at 

the contours of all the apertures. For a plastic that is 2:l perpendicularly glass-reinforced [7) with I = 4 we 

have the following values for the resonant frequencies: at* = 3.02Sk and co,,, = l.lllk (k= 1, 2, . . .); 
while for I = 6, oL t = 2.017k and CQ =0.741k. The quantities 1 and 0) are dimensionless: 1 =l’lR, 

co2 = 4p(c~YZ’?)~c~ (I’, a’, Zt, p and css are dimensionless quantities). Figure 2 shows graphs of I a,, I_ $2~~) 
as a function of CO on the contour of the aperture for 1 = 4 (the solid line) and for 2 = 6 (the dashed line). 
There are finite maxima near the resonant frequencies. They decrease and their abscissae approach w,, f 

as a, increases. Figure 3 shows the evolution of the la, I diagram on the contour of the aperture when the 
resonant frequency w,, 1 is approached for I = 6. 

If a plane wave is incident on the periodic system, then one can verify that at points of two adjacent 

apertures the stresses corresponding to the reflected wave differ by a factor exp(i&osql) (where $ is the 
angle of incidence of the wave and Y is its wave number). Thus in this case we have a qu~i-periodic 

problem with a = -~/cost& 

If one considers a radiation problem with a load on the apertures that does not possess quasi-periodic 

properties, then its solution reduces to the solution of a set of quasi-periodic problems and their 

superposition. 

2 4 f .? 

FIu.2 F10.3. 
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