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THE RADIATION AND DIFFRACTION OF STEADY-
STATE ELASTIC WAVES IN A PERIODICALLY
PERFORATED ORTHOTROPIC PLANEY

V. M. FOMIN
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(Received 21 April 1992)

Methods presented in [1] are used to investigate the radiation and diffraction of elastic waves by a
periodic row of circular apertures in an orthotropic plane.

A RANGE of similar two-dimensional problems for an isotropic medium has been considered
previously [2-4]. A similar problem has been studied for the anisotropic case, apparently only
for pure-shear SH-waves in a layer [5].

1. Consider a homogeneous orthotropic elastic medium and let the x,, x,, x, axes be
perpendicular to the planes of elastic symmetry, i.e. the principal axes. We shall investigate the
case of plane deformation in the x,, x, plane.

The equations of the dynamic theory of elasticity can be written as

%u, o%u,,
P = oo, .

Here u, is the displacement of points in the direction of the x, axes, p is the density, and c,,,
are the components of the elasticity tensor [6). In (1.1) and below summation is assumed over
repeated indices taking the values 1 and 2.

Putting u, =u? exp(—io¢) and omitting the time factor, we can write (1.1) in the form

2

u
Cj‘ax—l-a;+pwzu =0 (12)

Here u is a two-dimensional vector with components u] (k=1, 2), and C, is the matrix with
elements c,,, (k, m=1, 2).
Green’s matrix G(w, x,, x,) of the orthotropic plane is the solution of the equation

82
LG(0,x,,%,) =8(x)8(x;)I, L=C, -t pw’l (1.3)
L2aad}

(8(x;) is the delta function and I is the two-dimensional identity matrix).
After performing a double Fourier transformation with respect to x, and x, in (1.3) we have

M(@,£,8,)G(0,€,,8,) =1, M(0,E;,8;)= -CyE,E; +pw’l (14)
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512 V.M. FOMIN

Here &, (j=1, 2) are the transformation parameters and G (w. &,, §,) is the double Fourier
transform of Green’s matrix G(o, x,, x,). Below we shall denote functions and their trans-

forms by the same letter, distinguishing them by their arguments.

From (1.4) we obtain G(w, &, &,)=M(o, &, &,)". After simplification, this equality can be

reduced to the form

G(.8;.82)= (~Fy€,&; + pw’l)

1
A(0,€,.87)
A(&).§1 ’gz) = detM(m’gl »52)

where F, is the matrix adjoint to C,; and F,, =detC,-C;.
Performing an inverse Fourier transformation with respect to &, in (1.5), we have

G(0,&,,x;) = -F, E210 (0,81, %,) = i(Fyy + By JE M (0,81, ) + My (0,81, %5)

L od

1
no(@.81x)= 70 | SOy

It can be shown that the equation

- i
exp(-i%yxn) )d§2, n_,-:-—-‘—-——aago (=12)
2

A(w,E;,8,)=0

can be represented in the form

ks +a, (0,88} + 3 (0,€)) =0

and in the case of an orthotropic plane
o = Ccess @ (0,.8)=ayE - a5
4, (0.8;) =y - aptlod +of, ©f =pw’
ay; = C1yCp — Cf, ~2012C66, G2 =Cn +Cess Aa1 = C1iCes
ap =0y +Cssy €y =Cipits €22 =Cms €12 = Cuizs C66 = 2

(1.5)

1.6)

1.7

(1.8)

For orthotropic materials, whose elastic constants were given in [6, 7], the bilinear form
takes positive values. Then the roots &, (j=1, 2,3, 4) of Eq. (1.8) lie on the real and imaginary

axes, symmetrically with respect to those axes (Fig. 1).

To evaluate integral (1.7) we use Jordan’s lemma and the residue theorem. The contour of

integration for the case when x, >0 is shown in Fig. 1. We obtain

1 2 o exp(=v;lx)
ﬂ ((0,& 'x’l):"‘ 2("1)’ . A
0 ' 2a5(2 - Y1) j=1 Yj
$12
s o oy ] ez,/
1 s i s e
¢ ]
\\ €24 /’
N\
\\._ __..-‘/

(19)
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2a°

Y= {al (@, + (1Y [a, (@,E,)? - 4250, (.5, )P }%

In accordance with the radiation conditions in the second formula of (1.9) we take the
branch of the radical for which v,= Ya for a=0 and y,=-i V-a for a<0. (Here the square
roots are positive.)

Performing an inverse Fourier transformation with respect to &, in (1.6), we obtain Green’s
matrix for an orthotropic plane in the form

1= .
G(o,x;,x,)= o fexp(~i& x IF Eing (@.8,,x,) +

+i(Byy + 5 )6 M, (0,8, %) — Fpoy (0,8, x5 )14, (1.10)

2. The stress component parallel to the x; axis acting across an area element with normal nis
given by the formula p, =o,n, (where the o, are the components of the stress tensor and 7, is
the projection of m onto the x, axis).

Using Hooke’s law

ik 2  ikim axm ax‘

we find after a series of transformations that

]
pi= _a";_t;;mul’ ‘i'llm = Citim™ (2'1)

Note that relation (2.1) can be written as

P"=T"y, T"=T, -axi Th =15 P (22)

Acting with the operator T" on Green’s matrix (1.10) we find that
1 % .
GY (@, x;,X,) = T"G(@, x,,x,) = ™ [GT (0,8, x, )exp(=i,x,)d&,

The matrix G(w, x,, x,) will be called Green’s stress matrix.
From (2.2) and (1.10) we obtain

3

Gl (®,§,,x,)= Z_'.oﬂ,,, (0,8.%,)U, (0,§)) (23)
U, (0),&1 )= i&l (gllenFll - pszln)

U, (0.8)=E}TIR, - EIT'F, + 00’ T}

Uy (@,8)) = ~i§ | (TF,;, + T'Fy,)
U3(0,8)=T,'Fy

1™ (si m 2 s
’?m (ﬂ)’ él ] Xz) = ( 21:0 ((::g:‘ .;1 )) }EI(—I}!—i 7}"4 CXP(‘ yj le D (2.4)

When deriving (2.4) it was assumed that when m=2 the factor in front of &(x,) vanishes
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when x, =0 and hence the corresponding term can be omitted.
It can be shown that

v ~[ild;, d;=tlad + (1Y (a} - 4apa, Y212 as [E,| > oo
From this it follows that

( l)m(SlgﬁX2)m 2 ljdm t _d. I
2t - B ) @3)

N (©0,&;,%,) ~

Using (2.5), we find that G}(w, &,, x,)~G}(0, §,, x,) as I§ |- .
After transforming (2.3) we obtain

Gl (0,8, x,)= """"‘-‘“—‘"—rZ( -1/ [isign(&,)d;N

e(dz
—sign(x; )N, Texp(=d,[§,x,)) (2.6)
NE = S 1] ey ey L I ) e 12reney
A= +LF, -TFy, Np=TF,-TF +dTF,
it can be shown that
n _ 2 -] -2
G (@.8,,%,) -~ GI0.E;,x,)| = 0*llx,Jode, )+ 0&, ™)) @7
Substituting (2.6) into (2.3) and integrating, we have
1 2 il ( X X \
~T s N 5 1xf—- s i wiht 1 wihl 2 N\
G} (0,1, %) = ————5—57 (-1 " d;| N} ) 2.8)
L) (2 — d2) [ I\ aF e A A )
We will represent the matrix GJ(®, x,, x,) in the form
(0,x,%,) = GJ'(0,x,, %) + R0, ), X3)
w (2.9)
R“(m,x;,xg)zé}- JIGT (0,&,,x2) — GT' (0.8, x7 ) exp(~i§,x,)ag,

It follows from estimate (2.7) that the matrix R*(®w, x,, x,) is continuous over the combined
variables x,, x,. Thus the singularities of the functions G}(®, x;, x,) when ®#0 and G}(0,
x,, X,) coincide. It foliows from (2.8) that G3(0, x,, x,) has a unique singuiarity at x=0.

We will now construct Green’s matrix I'(®, x,, x,) for the quasi-periodic problem, i.e. we

datarmina the comnanente of tha dienlacemant amnlitudeg at the noint y={x.. x.) from the

VIV LRIV VAW VULLIPIUIAWIILY VR 1AV MIOPPAGUTIaAVIIL GRiapraisieieny & LAV USRS o riy wvgy SRRAERR

action of the system of lumped forces e,, exp(—ior) applied at pomts with coordinates x, = ml
(m=0,+1, 2, ...}, x,=0 (I being the length of some line segment) satisfying the equalities

€, =€ exp(«tma) (e; being the unit vector along the x; axis, j=1, 2), and from these
components we then form the jth column of the matrix I'( m, X, X,). Here a is the parameter
of the quasi-periodic probiem, iaisn.

Green’s stress matrix of the quasi-periodic problem is determined similarly, its columns

being components of the stresses over the area element with normal n. It is denoted by (o,

Xy, Xp).

Representations of dynamic Green’s matrices for anisotropic planes have been obtained in a
series of papers (see, for example, [8, 9]). However, these representations cannot be used to
construct Green’s matrix efficiently for a quasi-periodic problem.

We replace x, by x, —ml in (2.9), multiply it by exp(-ima) and sum over m from —eo {0 .
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We obtain
I} (@,x,x)=T7(0,x, %)+ Q" (X, %) (2.10)
I"'f(O,xl,xg) = Gf(O,x, ,x2)+S"(x;,x2)

x; —mi)exp(~ima) Ne Y2 exp(~ima) ]

2
n = 2 _ gt (-1 e sl :
S"(xy,xy) = [2ayn(dy ~ d)] ;El( ) z{ ;lg d}x%+(x,»ml)2 iz & d}x§+(x,—-ml)2

Q™(®,x,%;) = L RMw, x, - ml, x, yexp(—ima)
Q" (0, x,,%,) = Q' (©,%,,%,) - QI(0,x;,x,) 1)

Q:‘ (msxl &xZ) = 51;; TG?(mrglyXZ )2 exp{“i&l (Xl - ml) “ima]dgl

(the prime on the summation sign denotes the absence of the m =0 term).
Thus we have

?(&x)zé 00, Th)=G6r0%), Th(x)=5"(x) 2.12)

Mx)=-Q0,x), M(x)=Qr(®,x), x=(x,x%)

Using the formula
2
Sexpiimit)= 22 53(¢ -+
we obtain from (2.11) that

Q“{m,x,,xg)=§§; | SIGM(@.8,,%,)~ G (0,E;,%,)1x

xexp{--i&; (x - ml) - fmﬁ}éé; = ;%fﬂ? (mvgl,t ,Xz) - (233)
-G (0,8 5, %)]exp(=i& ,x), &, =(2kn~0)/]

It follows from (2.12) that for values of o which make Y, vanish (ie. y; when §, =§&;,),
n,(w, & : x,) and consequently also I'}(w, x;, x;) take infinitely large values. We say that
these frequencies are resonant, and denote them by w,,.

Equating (2.11) to zero, we obtain

0 = Eralian 12+ (1Y (@ 140y H VA @.14)

Note that at non-resonant values of @, I'f(®, x,, x,) has the same singularities as G}(0, x,,
x,) because Q*(w, x,, x,) and $*(x,, x,) are continuous.

3. Consider an orthotropic homogeneous elastic plane with a periodic row of circular
apertures of radius R whose centres lie along the x, axis separated from one another by
distances I/, We will solve the stationary quasi-periodic problem in which the load on the
apertures is transformed by an irreducible representation of the translation group with
parameter o ({al<x)
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Pi41(8) = exp(—imo)p, (6)

Here k is the number of the aperture (k=0, £1,12,...) and 0 is the angular coordinate of a
point of the contour.
We will look for a solution of the problem in the form of a simple layer potential

u(x) = Ifl F'@,x - y)q(y)ds, (31)

(q(y) is a two-dimensional vector and II is the contour of the fundamental aperture whose
centre lies at the origin of coordinates).
We will act on (3.1) with the operator T"

T u(x)= ,& I} @,x - y)q(y)ds, (32)
Passing to the limit as x—» x, € I, we obtain
lim [T} (@.x - y)q(y)asy = po(Xo) (33)
X-+X0 11

Here n is the normal to the circle IT at the point x, and p,(x,) is the specified load at the
contour.

The limit of the integral in (3.3) is not equal to the integral along the circle at x= x, because
of the singularity of the kernel I'J(®, x) at x=0. As has already been noted, this singularity is
the same as for G;(0, x), hence we obtain the additional term in the limit of the integral over I1
from the kernel G}(0, x).

We introduce the complex variables z; = x+id;x,, T, =y, +id,y,.

Then

ot W) 1 1 ]
=2 + 34
d}(xz-)’z)z“'(x) “.Vx)T 2(7']‘11‘ z/-+th GH

Let 0 be the angle giving the position of the point y on the circle I1. Then y, = Rcos9,
¥, =Rsin®, t; = R(cosO+id;sin6).
From this we have

dt; = (0)d0 = (-, +id;y)d® (3.5)
Because ds, = Rd6, using (3.5) we obtain
ds, =r(t))dt;, r(t;)=R/(y,+id;y)

It can be shown that

n-yads, 1), a(t))r(t)) . a)re))
lfld}(xz“)’2)2'*’(151")’1)1r 2L{,- 2;=%; u}+f£~ Z-W; ! 6

where ¢(t1,)=q(1,)=q(y) and TI, is the ellipse that is the image of the circle IT under the
transformation t; =1,(2), z=y,+iy, €IL _
Similarly, I1, is the image of IT under the mapping ,; =T;(2), with the integration around IJ,
being taken in the clockwise direction.
Assuming that the function g=g(y) satisfies the Lipschitz-Holder condition, from the
Sokhotskii-Plemel’ formulae we find that
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li
2%, 11, Z;-T; n; Zy; —%;

o I(l(“?;)'("j)d,tl,= f q(Ti)'("")dtj+1riq(Zo,-)’(Zo;') G

(z; €I, z; - z,; from outside the edge I1).

In a similar manner one can obtain an expression for the limit of the second integral on the
right-hand side of (3.6).

Using representations (2.10) and (2.11), and also the expression for the limits in formula
(3.7), we have from (3.3) that

A" (x)q(x)+ [T (@,x - y)q(y)ds, = po(x), xell (3.8)
n
A"(x) = dgTiR 3 (-1 INY Lz, - Nx, / 1/ (33 +d3x)
j=1

dy = [2aym(d? - d})I™

This is the integral equation of the problem.
Below, if the vector m is directed along the normal to the edge I, the superscript n will be
omitted.

4. Replacing x by x-y in (2.8) and substituting y, =Rcos8, y,=Rsin6, x, =Rcos8,,
x, = Rsin@,, we have after some reduction

d 2 ol -8, .
G (0,x~y) =2—;?/§1(_1)J ‘dj[ j,(coseo +ctg 3 2 smeo)+
-1
+N}, (ctg o ;90 c0s0, —sin@, )}(df cos? 218 | 2 9“; 9) @1

From (2.10), (2.11) and (4.11) it follows that Eq. (3.8) is singular. We shall seek its solution in
the form

q(6) =X q,, exp(imb) 4.2)

Henceforth the limit of g(y) as y — IT is denoted by g(0) where 0 is the polar angle of the
point y. Similarly p,(x) = p,(8,) (8, being the polar angle of the point x), I'j(w, x-y)=T(0,
8,, 9), etc.

Substituting (4.2) into (3.9), we obtain a modified equation; multiplying both sides of it by
(2m)™ exp(~in®,) and integrating over 8, from —& to & we arrive at an infinite system of linear
algebraic equations with respect to gq,,

3B,.q, =P, (43)

Here

R 4
= An-—m o %Bfm

B 2R

n

x 1 % ,
= [A®B,)exp(=indy)dBy, P, === | Po(8o)exp(=indy)ddy
2 . In oy

X K
Blnm = I I Fl,l (90 ,9) exp(lme - ineo )dedeo (4-4)

—-K-I
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Without dwelling on their derivation we give formulae for computing the coefficients of the
linear algebraic system

12 1 2 .
Bim =5 Z (D7 S 0000 g0t petm e =N ju) +
= =

+Wj ot ek et m{N ez FiN )l 4.5)

Here N, (j, k, m=1, 2) are two-dimensional matrices which are coefficients of the
following representation of the matrix N},

N =Ny, sin@g + N, cos8;, n=(cos8;,sin8,)

g 2pel
WitLam = T RIS amBpatm + 8t m)+
+8 0wt SIEAMAR=1) 5, 0 sign(m+n+1)]

g o 2p-d
W;2nm =T R85 9m B n s m — S a1 m) +
+5; pema SiEN( A n =D 5, sign(m+n+1)]

- pIR7Y. )8 (4.6

W.a o =Ad. RIS P (s, + t. )8
K (4] i Jpm 7 nm

A N pamal g;\p‘m«i
P
: 2p-i ik
M’}..4.6,m = 24(1015 R S: 4 i (‘j,p.m—l - t}‘p’m*x )SM‘
P
- 2, 5-1 . ,
W;sam = —407agl™ Lsign(g)f;,, expli(m -~ e, W, (a0 (a,,)
e

W 6mm = AT gl E’gjqp expli(m—njo 1, (a,0 )0 ()

{J,.(x) is the Bessel function of the first kind and 3, is the Kronecker deita}.
In these formulae s,,, ;. fi. and g, are the coefficients of the expansions

(d} cos* B+5in? 0)' = T5,6™®, [d7sin? 0+ (kI - cos8)’ ] = T t,e™°
éxp{—djlgl,*xﬂ):: Zf}*km exp(imxx; ;!23?}

exp(-d jl&mxz |) sign x, = ¥, 84, explimntx, / 2R)

The quantities g, and o, are defined by the equations
ap = n* 4+ Rzif,x}%. tgouy =2RE,  /
It can be shown that
Sim = OGN = OGN, fim =0, gjin=00ml™") @7

where the z, are complex numbers such that 1z, <1 (k=1, 2).
We note that the relations

T (680 PP
fetg 5 exp(imB)de = 21 exp(imB, )signm

—~%
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were used in deriving (4.5) and (4.6).
Similar relations also hold for A,

12
'2‘ ¥ (1) 2[ § G4k ne I(Nlk2+N1k1)+w)6+kn+l(Njk2’“N;k!)}
dod d
Wit =5t (Sinat ¥ Sjmet)s Win =52 (Sjin1 = 5jun)
i

5. We will show that for non-resonant values of @ the system reduces to a quasi-regular one.
From (4.4) and (4.5) we have

dy -
Bl A = "é“%" Z( 1)JP !d'{sj,Z,m(sn—Z.mejl +
’ 5.1
3,42, -mEj2 +28, nEj3)+ Sjn_ma sSign(m+n-2)E;, ~
—8; n-ms2 SigN(m+n+2)E, +25; , . sign(m+n)E
Here
Ejo=i(Njj; =N;5), E;==iN;; +Nj; +Nj; —iNjp
Ejy =iNjj +Njj +Njp +iNjp, Ej3=Njj -Njy
It can be shown that for Ini=2
B,,,=Bysignn, By=2C z (1[5, (Ej, ~Ej5)+25;0E ) (52
i=1
Similarly
dgfc -1
An = Z}(“‘I) d; (sj n»-ZE;S +s n+2E;6 +23}n ;4)
J«-
Eja=d;Njp +d;' Ny, Bjs=d;(=iNjy) +Njpp) - d7 (N jg +iNjp, )
Ejs =d;(iNjj, +Njp)~dj (Nj5 ~iN;p)
From this

A= “"’" £ 14525 + B+ 2508

We introduce the notation D, = A, + RB, signn/(2r) and make the substitution q,, =D/qZ in
system (4.3). As a result we obtain the system

EBMQM - pn’ Bfm = ann;xi (53)

We note that
R -1 g -
Bg = ZBIM,Bl nm (A"‘_m +‘§;B!v“m)nmi ] = Bgm‘) 1 (f > 1)

Obviously, for 1ni=2 the main diagonal of the matrix By, ,, consists of ones.
We estimate the sum
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2

D
zzlnl,n_m,k,ll

1=l mzn

(where the B, ., , are elements of the matrix B, ).
From (5.1) it follows that

2 2 lBen,m,k,I‘ ~ Bnk (5.4)
i=] men
= dgﬂ z.z d} 22 [|E€j.k,1"sj'2,,_4 +‘E?'2‘,,'[ISJ"2”+4I+
=1 "=l

YED s pafsnl + (EZ e+ lEﬁS.Ml)E I5jm-2|+
+(|E?,2,k,zl + lE?,G,k,l bz. 'lS j,m+2| + (IE?,o.k,ll + IE?,-t.k,ll)E 15 jmi

Here the prime on the summation sign denotes the absence of the m=n term, and E
elements of the matrices E), =E, D;/.

The convergence of the series in (5.4) follows from the asymptotic estimates (4.7).

The condition B,, <1 together with the condition for D;} to exist are restrictions imposed on
the elastic constants of the material. For orthotropic materials whose properties were given in
[6, 7] these conditions are, however, satisfied.

It follows from (4.7) that the coefficients B7, , have no effect on the quasi-regularity of
system (5.3).

One can show that the function Q(o, 8,, 0) is continuous on the square 16,1, 16/<m, where
it has partial derivatives satisfying a Lipschitz condition of some order pu (0 <p <1). Integrating
by parts over 0 in (4.4) and noting that the non-integral terms vanish, we obtain

it ATE

i 21Q(0.00,9)- Q0,0 O)le™ e 0 d8, (55)

i
B3,n.m +B4.n,m = ; k
Because 9/00[Q(w, 6,, 8)-Q(0, 8,, 6)] satisfies the Lipschitz condition, the inner integral
tends to zero like Im[™* as [ml|— o, The inner integral is, moreover, a continuous function of
6,. Hence the right-hand side of (5.5) also tends to zero as 1nl— eo. It then follows from (5.5)

that

2
D _ D D
Su=L 2% lBS,n,m.k.l + B4,n.m.k,ll
m i=]

exists and S5 —0 as |nl—eo,

Summarizing all the above concerning the coefficients of system (5.3), we arrive at the
conclusion that this system is quasi-regular, which means that both it and system (4.3) can be
solved by reduction.

6. We will investigate the behaviour of the solution of (3.9) in the neighbourhood of the
resonant frequency (2.14). As an example we will assume that @ - o, , (where k is fixed).
Then ¥y, , — 0, while the term in G}(o, €, ,, x;) tends to infinity. It can be shown that this term
has the form given below and the following asymptotic behaviour

exp(-Y; klle) 2 -1
Ug(w,§, ;) > ~Ug(®, 4.8 £ M2a0MY7 £ Y16 ]
(ORI 2001(72,1:—'7%,::)71,& 0(®y,£:61.6)(2a0HY2 4 Y1,

a8 OO ,, ¥, 0.
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Then Green’s stress tensor for the quasi-periodic problem can be written as follows:

exp(=i§4x;) "
oy Lkl +H(0,x,,%,) 6.1
2ag] %,k Y1,k k 1:%2 6.1)

where H}(®, x,, x,) is a matrix that is continuous as a function of x;, and x, and remains
bounded as ® = ®, ;.
With the help of (6.1) the integral equation (3.9) can be written as

(0, x,%;) =G} (0,x,%;) + Ug (@, 4,6 ¢)

€'V, +V)g=v 6.2)
®

e=Y, Via=(2n)" [exp[-i€, (R(cos8, —cos8)lq(6)dd
-x

2
Y, q= f0_:2_._lg_U61 (ml,kgl,k)[A(x)q(x) + l[lGl (0,x -y)q(y)ds, +
) (6.3)
L -
+[Hy(0,x-y)q(y)ds, |, v= TUO (@y4,8,,6)Po (%)
n
Note that V, is a finite-dimensional operator transferring the space L(-x, &) into the two-

dimensional subspace spanned by the vectors e, exp(—i€, ,Rcos8,) (j=1, 2). I{(-x, ) is the
Hilbert space of square-integrable two-dimensional vectors with scalar product

@@= ] 3p;0)7;0)d0

- j=l

The operator V, depends continuously on ¢, hence for small £ we put V,(e) = V,(0). From
(6.2) we obtain

(V,+eVy)q=¢ev (64)
We note that I$?(-x, x) can be represented in the form of an orthogonal sum of subspaces
L(zz)(—n, m=R+N 6.5)

Here R is the domain of values of the self-conjugate operator V|, while N is its null-space. It
follows from (6.5) that one can construct an orthonormal basis in LY(—rx, ) as follows:

Bo; R, 8, (m#0)eN (j=12)

For example, one can put g,, = e, exp(-if, ,Rcos8—ime).
We will seek a solution of Eq. (6.4) in the form of a series

aO)=3 208, ©) 66)

m j=
Substituting (6.6) into (6.4) and scalar-multiplying by g, (6,), we obtain

Pos + EAE gpmj (V28,;.801) =€(v.801) (I=12)
, ! (6.7)
2 _zlpmj(vzgmj'gnl) = (vvgnl) (n # Ov I= 192)

m j=

We eliminate p, (I=1, 2) from (6.7) and arrive at the following system of linear equations
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for p,, (j=1,2, m=41,+2,..))

2
2 vajﬂpmj =Vy (n = tl,iZ,...;l = 1,2)

mn0 j=1
Here

2
Voini = (V280 81) + €P§1(V28mj, Bop)K o

Kt = -1+ 8(V2807,802 ) U V28018 ) + (Vo801 .82 ) (VaLoz . 8,0} / X
K201 = {6(V2802.801 X V2801, 8nt) + (1 - €(Vago,, 801 ) VoL0z. 8,0} / K

K =1+ &[(VaBo1, 801 ) + (V2802802 )1+ € [(VaBoy 801 (VoL 8on ) —

2
~(V2801.802X(V2802,801)), Oy = (V,8,) +€ 2 (V. 80, )X
p=1

It follows from (6.3) that system (6.6) becomes quasi-regular for sufficiently small ¢
(including €=0). The proof is performed as for (4.4). Thus the behaviour of the solution in the
neighbourhood of a resonant point is in principle no different from its behaviour at other
frequencies.

Example. A periodic problem (o =0). Suppose that the same normal load p{®, f)=exp(-ie¢) acts at
the contours of all the apertures. For a plastic that is 2:1 perpendicularly glass-reinforced [7] with /=4 we
have the following values for the resonant frequencies: ®, , =3.025k and w,, =1.111k (k=1,2,...);
while for =6, o,,=2.017k and ®,,=0.741k. The quantities ! and o are dimensionless: !=!"/R,
o’ =4p(arR)’c (I’,o, R, p and c,, are dimensionless quantities). Figure 2 shows graphs of |6, lo, /(2¢)
as a function of ® on the contour of the aperture for /=4 (the solid line) and for /=6 (the dashed line).
There are finite maxima near the resonant frequencies. They decrease and their abscissae approach o, ,
as o increases. Figure 3 shows the evolution of the 1o, | diagram on the contour of the aperture when the
resonant frequency @, ; is approached for I=6.

If a plane wave is incident on the periodic system, then one can verify that at points of two adjacent
apertures the stresses corresponding to the reflected wave differ by a factor exp(ixicos¢) (where ¢ is the
angle of incidence of the wave and x is its wave number). Thus in this case we have a quasi-periodic
problem with o =-x/cos¢.

If one considers a radiation problem with a load on the apertures that does not possess quasi-periodic
properties, then its solution reduces to the solution of a set of quasi-periodic problems and their
superposition.
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